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Abstract In this article we describe implementations of various bio-inspired algorithms
for obtaining the chemical gas concentration map of an environment filled with a contami-
nant. The experiments are performed using Khepera III and miniQ miniature mobile robots
equipped with chemical gas sensors in an environment with ethanol gas. We implement and
investigate the performance of decentralized and asynchronous particle swarm optimization
(DAPSO), bacterial foraging optimization (BFO), and ant colony optimization (ACO) algo-
rithms. Moreover, we implement sweeping (sequential search algorithm) as a base case for
comparison with the implemented algorithms. During the experiments at each step the robots
send their sensor readings and position data to a remote computer where the data is combined,
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Söğütözü Cad. No: 43, 06560 Ankara, Turkey
e-mail: mirbek.turduev@etu.edu.tr

G. Cabrita · L. Marques
Department of Electrical and Computer Engineering, Institute of Systems and Robotics,
University of Coimbra, 3030-290 Coimbra, Portugal
e-mail: goncabrita@isr.uc.pt

L. Marques
e-mail: lino@isr.uc.pt

M. Kırtay
Department of Computer Science, Özyeğin University, Çekmeköy Campus,
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filtered, and interpolated to form the chemical concentration map of the environment. The
robots also exchange this information among each other and cooperate in the DAPSO and
ACO algorithms. The performance of the implemented algorithms is compared in terms of
the quality of the maps obtained and success of locating the target gas sources.

1 Introduction

1.1 Robotic olfaction

In recent years the number of studies on application of robotic odor-sensing technology has
increased substantially. Mobile robots equipped with chemical sensors can be useful for a
number of application areas including safety, security, and environmental inspection. Instead
of humans, robots can be dispatched to areas with odor contamination for inspection, or pro-
viding continuous monitoring of the contaminated environment for specific characterization
of the odor. Employing multiple robots can further improve performance since they can do the
search cooperatively in parallel. To achieve these goals there is a need for developing efficient
algorithms for coordination between robots as well as robotic search, exploration, and cov-
erage. For that purpose various approaches might be developed based on extremum seeking,
gradient or hill climbing, multi-objective optimization algorithms, game theoretic strategies,
negotiation based algorithms, classical methods such as sweeping, extending single-robot
search, exploration, and coverage algorithms, and others. Another possibility is to use bio-
inspired algorithms. Nature based algorithms such as particle swarm optimization (PSO),
artificial immune systems, bacterial foraging optimization (BFO), and ant colony optimiza-
tion (ACO) have been implemented in various applications including pollution mapping [1],
mobile robot path planning [2], job scheduling [3], and traveling sales person problems [4].
In this paper, we employ bio-inspired algorithms to address the problem of determining the
gas distribution in indoor environments by a group of mobile robots equipped with on-board
gas sensors.

1.2 Problem definition

Consider an application in which a group of robots are required to perform a search in an
unknown environment contaminated with a chemical substance. The chemical substance
is possibly dangerous for human beings. Therefore, search by autonomous robots is more
suitable to the problem. Moreover, employing multiple robots in parallel search may possibly
lead to a faster and more effective performance. Assume that the robots are equipped with
the necessary hardware and are able to sense the chemical (or the set of chemicals) which
contaminate the environment. The objective is to build the map of chemical concentration
as well as to determine the region with the highest concentration of the contaminant. Such
information might be useful for experts who may determine whether the concentration level
of the chemical is within tolerable levels or constitute a danger. If there are more than
one chemicals contaminating the environment and the robots are equipped with chemical
sensor arrays and can sense and distinguish different chemicals, it might be possible to
determine the composition of the chemicals contaminating the environment. This, on the other
hand, can provide extra useful information about the sources and severity of contamination.
Higher chemical concentration areas usually occur very close to the sources of chemicals and
determining the regions with high concentration might give information of the positions of
the leaks (i.e., chemical sources) contaminating the environment. Such a situation can arise
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in, for example, a building (such as a large warehouse) under fire where burning of certain
chemicals might be dangerous since certain levels of some chemicals might lead to explosion.
Moreover, the composition of the chemicals might provide information about the burning
materials. All this information can be collected by the robots without endangering the lives
of firefighters and critical decisions might be taken (e.g., a decision such as whether to go
into the building or not) based on the information obtained by the robots. Other applications
can include disaster situations in chemical or nuclear plants (provided that the robots are
equipped with the necessary sensing hardware) and security or defence applications.

In order to be able to perform efficient search the robots should be able to pass their sensor
readings as well as other needed information among each other. Moreover, they are required
to pass the information they have gathered to a remote computer (a base station) where the
data should be collected and combined and visual information must be provided in real-time
to an operator. The task is to search an unknown environment with multiple-robots with the
objective to locate the highest concentration of the gas and build a real-time map of the gas
distribution.

1.3 Related work

Odor source localization and mobile robot olfaction have been investigated in various stud-
ies [5–9]. The studies include approaches such as swarming algorithms [5], hidden Markov
methods [6], and Bayesian inference methods [7]. Similarly, integrating odor classification
and gas distribution mapping [9], and utilizing Gaussian weighted functions and concentra-
tion gridmaps [8] for chemical gas concentration mapping of unknown environments have
been also considered. The studies in [6–9] utilize a single agent, whereas the work in [5]
considers multiple agents. Multiple odor sources are considered only in [9]. An environ-
ment with multiple contaminating sources is expected to be less ideal (more dynamic) and
bring new challenges. Therefore, algorithms developed for static environments might not
perform satisfactorily in applications involving multiple contaminating sources. Moreover,
studies involving only simulation might overlook the practical/experimental difficulties which
might be present in applications with real contaminating chemical sources. Starting from this
point this article focuses on multi-robot bio-inspired algorithms for building chemical con-
centration map of an unknown indoor environment contaminated by a real chemical gas. In
particular, we consider decentralized asynchronous particle swarm optimization (DAPSO),
BFO, and ACO algorithms as high-level path planning and search strategies.

The PSO algorithm was introduced by Eberhart and Kennedy and used for optimization of
continuous nonlinear functions [10]. In [11,12] Marques and his colleagues adapted it to the
multi-robot odor searching problem, investigating both theoretically and experimentally the
application of a PSO inspired search strategy for detecting odor sources across large spaces.
There are also studies on adapting or utilizing PSO to multi-robot search problems [13–
17]. The DAPSO algorithm implemented in this article has important differences with these
algorithms and allows for dynamic neighborhood topology and time delays in information
exchange in addition to totally decentralized and asynchronous operation.

The BFO algorithm was developed by Passino [18] inspired from chemotactic behavior
of an E.coli bacterium while searching for nutrient rich environments [18,19]. It is another
algorithm which has been adapted and implemented in multi-robot search applications to
monitor plumed environments in a phototaxis experiment [20], and to determine pollution
source location [1].

The ACO algorithm was developed by Dorigo [4] inspired by the foraging behavior of ant
colonies. Up until now, the algorithm has been successfully implemented on various problems
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such as traveling sales person, machine learning, job scheduling, and path planning [4]. It has
been also utilized for odor source localization [21,22] in a Matlab simulation environment.
In this article we use ACO to build chemical gas concentration map through mobile robots
with real chemical gas.

Note that the work here has important differences from related works presented above.
First of all, we use a real robotic system which operates in a real chemical (ethanol gas)
environment. The works in the literature are mostly simulation based and/or either use smooth
non-experimental data or operate on a previously collected and smoothed data. Moreover,
substantial amount of the studies are performed using a single robot. Furthermore, most
of the studies are on source localization. Since our robots perform search based on sensor
reading information they are equipped with chemical sensing hardware. Most of the related
studies which use simulated or other data just assume that the robots have sensing capability.
Therefore, the works using pre-collected and smoothed or simulated data are not exposed to
measuring imperfections and other effects to the same extend as our work here. Moreover, in
addition to locating the areas with high gas concentration (and therefore the contamination
sources) here we also perform real-time chemical concentration map building. In other words,
the obtained gas concentration is visualized in real-time on a remote computer (a base station)
in a realistic scenario. In fact, building the map of the chemical gas is the primary task in this
study.

In addition to the primary considered bio-inspired algorithms (i.e., DAPSO, BFO, and
ACO) we have implemented also sweeping (sequential search algorithm) and Canonical
PSO (CPSO) algorithms for performance comparison purposes. This study constitutes an
extended and comparative version of the studies in [23–25].

2 Experimental setup

2.1 Environment and robots

Implementations were performed in two experimental setups available at our laboratories.
Note that one of these setups was also used in [23–25]. Therefore, part of the description here
follows along the same lines as the description in [23–25]. Initial set of experiments were
performed with Khepera III mobile robots equipped with the “kheNose” sensing system [26]
and Figaro TGS2620 alcohol sensors. The second set of experiments were performed with
miniQ mobile robots equipped with e2v MiSC5524 gas sensors. The experimental setups used
are shown in Fig. 1. The first setup consists of 3.40×2.40×1.35 m dimensional experimental
arena covered by a transparent vinyl cover (Fig. 1a). In order to provide gas circulation
the front right corner of the covered arena is left open to let air flow inside it. Similarly, the
second setup consists of completely enclosed 3.0×4.0 m arena delimited by four walls where
two of them are made of an honeycomb-like pattern to allow for the air to flow between the
two 3.0 m opposing walls. It includes an array of controllable fans that allows generating
different patterns of air flow. These setups constitute small scale representations of a large
building (such as a warehouse) filled with a contaminating chemical gas. Ethanol, which is a
volatile and colorless liquid, is used as chemical gas. For that purpose we use an air bubbler
system composed of bottles half filled with ethanol, an air pump, and plastic tubes to inject
the evaporated alcohol into the enclosed environment. Odor sources are located at the ceiling
of the covered area and inject the gas downward.

In the implementations performed in Setup I differentially driven Khepera III robots shown
on Fig. 2a are used. They are equipped with KoreBotLE extension cards which have Intel
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(a) Setup I (b) Setup II

Fig. 1 Enclosed experimental setups

(a) KheperaIII robots (b) MiniQ robots

Fig. 2 Robots used in the implementations

PXA255 processors working at 400 MHz. In order to determine/measure sensor readings a
DSPIC30F5011 microcontroller working at 60 MHz is used and the sensors communicate
with the microcontroller via the I 2C bus. Each wheel motor is controlled by its own PID
controller implemented on a PIC18F4431 microcontroller which is also used for measuring
the odometry information of the robot. The robot localization is improved by a MicroStrain
3DM-GX2 Inertial Measurement Unit (IMU), shown on top of the robots in Fig. 2a. This
IMU combines a high-performance triaxial gyro with a triaxial accelerometer, and a triaxial
magnetometer to provide complimentary displacement and orientation estimates. Orientation
errors are dominant in odometry localization system errors. The employed IMU devices
allow reducing these errors. Simple thresholding method is used to integrate the data from
the IMUs to the odometry data. Basically, when the change in robot orientation is larger
than a predefined threshold, the IMU data is used for calculating the turn rate and therefore
for localization, otherwise the odometry data is used for localization. More sophisticated
localization algorithms are also possible. However, it should be noted that localization is not
the main emphasis of this article. Moreover, experimental tests using the UMBmark [27,28]
procedure performed using a 50×50 cm2 path show that in the considered experimental arena
the self-localization error for the Khepera III robots using the above odometry correction is
small. In particular, it was shown in [29] that while the mean errors for normal odometry
over 20 experiments are εx = 3.11 cm,εy = 3.33 cm, and εθ = 7.86 ◦, which denote the
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average return position and orientation errors, the same for the IMU corrected odometry are
εx = 0.73 cm,εy = 0.71 cm, and εθ = 1.55 ◦.

In the implementations performed in Setup II differentially driven MiniQ robots shown on
Fig. 2b are used. MiniQs are small and cheap robots based on the Arduino micro-controller
powered by an Atmega328 running at 16MHz. They were modified to achieve olfactory
swarming and were equipped with an e2v MiSC5524 gas sensors. They were also equipped
with two LEDs (one red and one blue) for usage with an Arecont MegaVideo IP camera
for correcting the odometry of the robots and to provide global localization. Due to the
low processing power of the miniQ an XBee module is used for communication with a
computer. The robots are in charge of calculating their odometry and receiving linear and
angular velocity commands. The computer runs the navigation, odometry correction, global
localization and the swarming algorithms. Odometry correction and global localization is
achieved using SwisTrack, a software designed for tracking robots. In this case the dual tag
composed by the red and blue LEDs allows to acquire the pose of the robot (position and
orientation).

We would like to emphasize once more that the emphasis here is on the cooperative
chemical concentration map building by multiple robots. The localization we use is sufficient
for the laboratory experiments in this article. For applications in environments such as large
warehouse the robots should have also reliable localization capability.

2.2 Chemical sensors

KheNose is a modular olfactory sensing system for Khepera III mobile robots. This device is
composed by a main board, with robot interfacing and processing capabilities, and an array
of gas sensing nostrils, a temperature and humidity sensor, and up to three small thermal
anemometer boards.1 Each sensing board contains a Transducer Electronic Data Sheet stored
in an EEPROM memory, providing plug-and-play capabilities to the system [26]. The main
board contains a Microchip dsPIC33F controller which acquires all the analog and digital
information from the sensors, processes that data and sends it to the Khepera III KoreBotLE
extension board through an I 2C interface. The system can operate as an odor compass, being
able to measure airflow intensity and direction while it classifies the detected odors [30]. The
odor classification is achieved by means of a feedforward neural network. This classification
can be done using the steady-state response of the gas sensor array or, for faster classification,
using the coefficients of the discrete wavelet transform of the sensor array transient response
[31].

As mentioned above, the minQs were equipped with e2v MiSC5524 gas sensors. This
choice is related to the fact that the miniQ has low torque motors, which combined with
the low resolution from the single channel encoders makes it difficult to move the robot at
low speeds. The MiSC5524 from e2v is faster than the Figaro TGS2620 and is thus more
appropriate for the miniQ.

2.2.1 Calibration of multiple olfactory systems

The conductance G of tin oxide gas sensors varies with the concentration C of a target
reducing gas accordingly with following relationship [32]:

G = G1 PR
n (1)

1 In the current work, only the information provided by a Figaro TGS2620 metal oxide gas sensor was
employed.
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Fig. 3 Calibration setup

where G1 is the conductance for a small concentration C1 of the reducing gas, PR = C/C1

is the relative concentration of the gas, and n is a constant dependent from the gas and from
the sensor.

In multiple robot olfactory experiments it is fundamental to have the sensing systems
calibrated against the same standard values, so the measurements can be merged in a single
concentration map. In the current experiments the following fast calibration method was
implemented:

(1) All the employed robots/sensors were placed inside an enclosed acrylic box with 30 ×
30×20 cm3. The box contains a 5 cm diameter ventilator fixed on the top and a reference
sensing system fixed in a lateral wall, containing a gas sensor and temperature and
humidity sensors (Sensirion SHT21). The box contains an inlet through which fixed
amounts of a target gas (ethanol vapor) can be inserted. The concentration inside the
calibration space is kept homogeneous by the action of the mixing ventilator.

(2) The conductance in clean air was registered as Gair .
(3) A small volume of ethanol vapor was inserted into the calibration space and, after

stabilization of the sensors, the conductance corresponding to the existing atmosphere
concentration C1 was registered as G1.

(4) The same volume of ethanol was inserted into the calibration space and the conductance
G2 corresponding to the concentration C2 = 2C1 was registered.

Known amounts of ethanol vapor can be inserted into the calibration space using a large
syringe or a mass flow controller, as shown in Fig. 3. In that figure the robots are inside an
acrylic glass calibration box, containing a small fan mixer to homogenize the atmosphere.

After the above calibration procedure, the constant n of each sensor could be determined.
In operation, for concentrations above C1, Eq. (1) was employed and for concentrations
below that value, a linear interpolation between the output to clean air and the output to C1

was employed.

3 Potential functions and robot control

In order to navigate and also avoid robot to robot collisions artificial potential functions
are used for low-level control of the robots. With this objective in order to move the robots
(both Kheperas or miniQs) to their next way-points we use quadratic attractive potential
functions and require the robots to move along their negative gradients. Also, in order to
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Fig. 4 Non-holonomic robot model

avoid collisions between the robots we use repulsive potential functions which are activated
when the distances between robots become smaller than a predefined constant value D.
In the Kheperas the repulsive potential forces are calculated using the readings of the infrared
sensors. Since the miniQs do not have proximity sensors collision avoidance is not employed
in the experiments with them.

The motion of the robots in R
2 can be represented with the unicycle agent model

ẋi (t) = v̄i (t) cos(θi (t)),
ẏi (t) = v̄i (t) sin(θi (t)),
θ̇i (t) = wi (t)

(2)

where pi (t) = [xi (t), yi (t)] is the position vector and θi (t) is the steering angle of agent i at
time t . Its control inputs are the linear speed v̄i (t) and the angular speed wi (t). The illustration
of the non-holonomic robot model is shown in Fig. 4. Note that here the robots correspond
to particles in the DAPSO and CPSO algorithms, to the bacteria in the BFO algorithm, and
to the ants in the ACO algorithm. These bio-inspired algorithms are used for high-level path
planning of the robots or basically for determining the way-points the robots should visit.
In other words, at time t i

k (iteration k for robot/agent i) corresponding to the kth way point
pi (t i

k) = [xi (t i
k), yi (t i

k)] ∈ R
2 in Cartesian coordinates robot i computes its (desired) next

way point pi (t i
k+1) using one of the mentioned bio-inspired algorithms. In order to move

the robot from the kth way point pi (t i
k) to the (k + 1)th way point pi (t i

k+1) we use artificial
potential functions for low level control. In particular, we use the straight path between the
two points and force the robot to move along the vector p̄(t i

k) = pi (t i
k) − pi (t i

k+1) to reach
pi (t i

k+1). For that purpose we use a quadratic potential of the form

J i
attr (t) = a

2

(
pi (t) − pi (t

i
k+1)

)2

where the constant parameter a > 0 is an attraction coefficient, pi (t) represents the current
position of the robot at time t ∈ [t i

k, t i
k+1), and pi (t i

k+1) is the next way-point of the robot in
the search space. Let us denote the negative gradient of the attractive potential J i

attr (t) with
Gi

attr (t) (i.e., Gi
attr (t) = −∇pi J i

attr (t)). Then, we have

Gi
attr (t) = −a

(
pi (t) − pi (t

i
k+1)

)
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for t ∈ [t i
k, t i

k+1). Note that with this configuration there is a linear attraction for each robot
towards its respective way-point in the search space. In contrast, to avoid robot to robot
collisions a nonlinear (and unbounded) repulsion potential is used in the form

J i j
rep(t) = b

(
ln(‖ p̄i j (t)‖) + D

‖ p̄i j (t)‖
)

where p̄i j (t) = (
pi (t) − p j (t)

)
and the constant parameter b > 0 is a repulsion coefficient.

This potential, which is used in the experiments with the Khepera robots, is activated only in
case there is robot j in the vicinity of robot i at a distance smaller than a predefined distance
D. Calculating its gradient Gi j

rep(t) at time t ∈ [t i
k, t i

k+1) one obtains

Gi j
rep(t) =

{
b p̄i j (t)

(
1

‖ p̄i j (t)‖2 − D
‖ p̄i j (t)‖3

)
, ‖ p̄i j (t)‖ ≤ D

0, ‖ p̄i j (t)‖ > D

which constitutes the artificial repulsive force to be inserted on robot i due to robot j in its
vicinity.

Using the above, the total potential (field) Gi (t) for robot i is determined as

Gi (t) = Gi
attr (t) +

N∑

j=1, j �=i

Gi j
rep(t) (3)

where N is the number of robots. Note also that although the summation of the repulsion
terms is over all the other robots, only those which are within the detection range of robot
i actually effect the value of Gi (t). We use the local coordinate system of the robot for
calculating the attraction and repulsion forces.

Since the robots are non-holonomic (i.e., they cannot move in the direction of the axis
connecting the two main wheels) and since their orientations initially may not necessarily be
along the vector potential, we define the desired direction of motion of agent i as

θ i
d(t) = atan2

(
Gi

y(t), Gi
x (t)

)
, t ∈ [t i

k, t i
k+1),

where Gi
x (t) and Gi

y(t) represent the x and y components of the potential field Gi (t),
respectively. Then, for the orientation dynamics of the robot we use the simple proportional
controller

wi (t) = −α
(

mod((θi (t) − θid(t)) + π, 2π) − π
)
, t ∈ [t i

k, t i
k+1), (4)

where θi (t) represents the current orientation of the robot at time t and α > 0 is the propor-
tional gain. This shifted mod operation in (4) results in the fact that the robot turns towards
the desired orientation in the direction of the smaller angle between it’s currents orientation
and desired orientation vectors [33]. For the linear speed controller we use

v̄i (t) = min{‖Gi (t)‖, vmax }, t ∈ [t i
k, t i

k+1), (5)

where vmax is an upper bound on the linear speed of the robot.
In addition, because of the noise in the measurements of the infrared sensors, we augment

the potential functions based collision avoidance of the Kheperas with a priority based robot
to robot collision avoidance. In other words, when two robots get in a close collision distance
the robot with smaller ID waits until the robot with larger ID avoids the collision and continues
on its path.
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In an environment with obstacles the above algorithm can easily be modified to incorpo-
rate potential functions based obstacle avoidance similar to robot to robot avoidance, using
the information provided by the range sensors (assuming that the robots possess such sen-
sors). Moreover, other low-level control algorithms can also be used instead of the potential
functions method described here. The tasks of the low-level control are to move the robot
from its current position to its next way point generated by its high-level path planner (i.e.,
DAPSO, BFO or ACO in this article) and to avoid collisions with other robots and (possibly)
obstacles. Any algorithm which provides these capabilities can serve as a low-level controller.
One issue to be considered in environment with obstacles is the situation which raises when
a generated way-point occurs to be located in a location occupied by an obstacle. The robots
must possess capability to detect such situations and to replan their next way-points.

4 Bio-inspired search algorithms

4.1 Particle swarm optimization

In this section we briefly describe the PSO algorithm which is one of the algorithms used
as high-level path planning strategy. In particular, first we describe the standard or canonical
PSO algorithm following which we discuss also the DAPSO algorithm used in this article.
PSO is a population based direct search algorithm which is in general suitable for multi-
robot search applications. However, there are also important differences which are discussed
in [13]. Two of the main differences can be stated as: (i) the robots cannot jump to their
next positions, whereas the particles can do; (i i) the communication range of the robots can
be limited, whereas there is no such constraint for the particles. (See [13] for more details.)
These differences can lead to degradation of performance or even failure of the PSO algorithm
when it is applied directly to multi-robot search without any modification. We discuss the
differences in detail in the subsection on the DAPSO algorithm. However, for completeness
let us first discuss the synchronous basic PSO algorithm.

4.1.1 Canonical PSO (CPSO) based search algorithm

In this article we use the PSO version proposed by Clerc and Kennedy in [34] to which we
refer to as Canonical PSO or CPSO for short. It uses a “constriction coefficient” to prevent
the “explosion behavior” of the particles (see [34] for more details). At the kth iteration the
update of particle i, i = 1, . . . , N , can be described as

vi (t
i
k+1) = χ

[
vi (t

i
k) + ϕi

1(t
i
k)

(
bi (t

i
k) − pi (t

i
k)

)
+ ϕi

2(t
i
k)

(
gi (t

i
k) − pi (t

i
k)

)]
(6)

pi (t
i
k+1) = pi (t

i
k) + vi (t

i
k+1)

where t i
k is the update time. Note that in this article each robot is considered as a particle

from PSO view-point. The robot dynamics operates in continues time t and the instances
at which robot/particle i performs its kth iteration is denoted with t i

k . Here pi (t i
k) ∈ R

2

represents the position (way point) of the i’th particle at time t i
k, bi (t i

k) ∈ R
2 represents the

best position of the i’th particle from time t = 0 to time t = t i
k, gi (t i

k) ∈ R
2 represents

the best position of the (possibly time varying) neighborhood of the i’th particle from time
t = 0 to time t = t i

k . The value pi (t i
k+1) ∈ R

2 which is calculated in (6) is the next (desired)
way point to which the robot should move. The learning coefficients ϕi

1(t
i
k) ∈ [0, ϕ̄1]2 and
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ϕi
2(t

i
k) ∈ [0, ϕ̄2]2 are two dimensional uniform random vectors. The constant parameter

χ > 0 is the constriction parameter which prevents the explosion behavior, i.e., particles
having high velocities leading to their scattering in the search space. For efficient performance
and prevention of the explosion behavior in (6) we use the components of the learning
coefficient vectors ϕi

1(t
i
k) and ϕi

2(t
i
k) proposed by [34] as

ϕi
1 j (t

i
k), ϕ

i
2 j (t

i
k) ∈ [0, ϕ̄ j ], j = 1, 2; i = 1, . . . , N . (7)

The constriction parameter χ > 0 is calculated with the relation (refer to [34])

χ =
{

2κ

ϕ−2+
√

ϕ2−4ϕ
, if ϕ > 4,

κ, else.
(8)

Here ϕ = ϕ̄1 + ϕ̄2 and κ ∈ [0, 1]. Similar to the work in [35], considering ϕ̄1 = ϕ̄2 = 2.05
and κ = 1, the constriction parameter is calculated as 0.7298 for this implementation.

4.1.2 Decentralized asynchronous PSO (DAPSO) based search algorithm

As mentioned before there are important differences between robotic search and PSO search.
The robots have to traverse the entire path between the current way-point and the next way-
point calculated by the PSO algorithm. Since the distance between the current positions
and the next way-points can be different for different robots in the CPSO a robot which
arrives at its way-point earlier than the other robots has to wait for them in order to per-
form its iteration. Moreover, since the communication range of the robots is usually limited
and the area to be searched can be large during the search process the robots may exit the
communication range of their neighbors, which may result in indefinite wait and stall by
the system. Moreover, permanent communication and robot failures can lead to failure of
the overall search. Realizing these potential problems a DAPSO inspired multi-robot search
algorithm which allows also for dynamic neighborhood and possible time delays is proposed
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in [35] (which is also inspired by the earlier works on DAPSO in [36,37]). The realization of
this algorithm on the robotic search problem here can be briefly described by the pseudocode
given in Algorithm 1 (which is taken from [35] with slight modification) and illustrated in
Fig. 5. In Algorithm 1 S(bi ) refers to sensor reading at the best position of robot and S(gi )

is the sensor reading at the global best position. Note once more that before initiating the
algorithm the robots move to points away from each other for better coverage of the area.
During this step also they continuously sense the environment and send the information to
the base station. This behavior is used also in the BFO and ACO algorithms discussed below.
The move behavior in Algorithm 1 is illustrated in Algorithm 2. It is also a generic behavior
which is used in the algorithms below as well. One can see from the pseudocode in Algorithm
1 (which describes the operation of a single agent) that the agents operate in a decentralized
fashion and there is no attempt to synchronize their operations. Moreover, they utilize only the
data obtained without waiting for all other robots to finish their operations. A mathematical
model for the DAPSO algorithm can be found in [36,37]. These properties turn advantageous
in multi-robot applications over the CPSO algorithm. In particular, they solve the above
mentioned shortcomings (i.e., waiting for exchange of information and potential temporary
or permanent stall and failure to complete the task) of the CPSO algorithm. Moreover, the
CPSO algorithm can suffer from scalability problems since every robot needs to communicate
and exchange information with every other robot. In contrast, in the DAPSO algorithm the
robots use only the information they have access to. The robot communication is in principle
unidirectional and they just broadcast their information. The robots which are close enough
to the broadcasting robot and receive its data use it in their DAPSO iteration. They do not
even have to know how many robots there are in the group or in their proximity. In a large
warehouse with dimensions much larger than the communication range of the robots, in the
DAPSO algorithm the group may separate to disconnected subgroups operating in different
regions of the environment without disrupting operation and each subgroup can continue
its operation and complete its task in its region. Taking these issues into account one can
state that compared to the CPSO algorithm the DAPSO algorithm will better scale to larger
number of robots and to larger environments (relative to the communication range of the
robots).

One can notice that there are three main tasks which the robots perform. These tasks are
presented in Table 1. The “move” task is in principle the same for all algorithms considered
in this article. The “acquire, process, and exchange information” task has commonalities
and differences. The differences are mainly in the strategy/algorithms to acquire and process
information. Moreover, not all algorithms require exchange of information and cooperation,
although the data is sent to the base station in all cases. These differences are also reflected
to the “explore and exploit” task which is the main path planning task used to determine

123



84 Auton Agent Multi-Agent Syst (2014) 28:72–100

Fig. 5 Illustration of the PSO algorithm on mobile robots

Table 1 Tasks

Task Explanation

Task 1: Explore and Exploit Determine path for exploration.

Assign way-points.

Task 2: Move Move to target way-point.

Motion control (with obstacle avoidance).

Task 3: Acquire, process, and
exchange information

Read chemical concentration data, perform necessary
calculations, send the data to the other robots
and the base station.

the positions to visit. In particular, every algorithm has its own logic for calculating the next
way-point the robot should visit for effective exploration.

4.2 Bacterial foraging optimization

4.2.1 General specifications of BFO

In this section we describe the original BFO algorithm proposed in [18]. BFO is one of
the nature inspired algorithms which tends to imitate basic foraging behavior of bacteria.
In that, bacterial motile behaviors, namely taxes, is triggered by the varying concentration
of either nutrients or noxious substances in the environment. Bacteria movements can be
categorized into two main motile behaviors which are tumbling and swimming (or running)
which are achieved based on the clockwise or counterclockwise rotation of the flagella.
Chemical substances in the environment enable bacteria to decide whether to swim or to
tumble. The motion of bacteria can be described in terms of run intervals during which
the cell swims approximately in straight line alternated with tumbles, when the organism
undergoes a random reorientation.

Inspired from this behavior in the BFO algorithm the chemotactic behavior of the bac-
teria is represented by two activities which are namely a tumble and a swim. During the
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j th chemotactic step, the position displacement of the i th bacterium can be represented
as [18]

θi ( j + 1, r, l) = θi ( j, r, l) + C(i)φi ( j) (9)

where C(i) > 0, i = 1, . . . , N is basic chemotactic step size that defines the length of steps
during runs; θi ( j, r, l) indicates the position of the i th bacterium at j th chemotactic step
in the r th reproductive loop of the lth elimination and dispersion event and φi ( j) is a unit
length random direction vector in the j th chemotactic step which is generated with orientation
within the range [0, 2π ] in R

2. In other words, C(i) is the size of the step taken in random
biased direction specified by a tumble in each chemotactic step. The bacterium compares the
concentration/cost/fitness value at the position θi ( j+1, r, l) and the concentration/cost/fitness
value at the position θi ( j, r, l) and makes a decision of the next chemotactic step. If the
concentration value at the position θi ( j + 1, r, l) is better than the concentration value at the
position θi ( j, r, l), then the bacterium does not perform a tumble and swims C(i) steps in
the previously chosen direction φi ( j) (i.e., the direction determined at the previous tumble).
The bacterium continues its swims in the same direction as long as the new measured values
are better than the old values or until a predefined maximum number Ns of swim steps is
reached. In contrast, if the cost value at the position θi ( j +1, r, l) is worse than the cost value
at the position θi ( j, r, l) then the bacterium will perform a tumble and a new random unit
direction vector φi ( j) is generated.

Execution of Nc chemotactic steps, leads the BFO algorithm to a reproduction step.
In this step the algorithm sorts all bacteria according to their own accumulated cost, which
depends on the values of the function being optimized (i.e., the concentration/cost/fitness) at
the positions which the bacteria has visited so far, to distinguish the healthy bacteria which
are the first half of the population size. Then, the bacteria which are located in the first half
reproduce (i.e. make their own copy) and the bacteria in the second half are eliminated to
protect the initial population size.

In nature, external dynamics, unpredictable environmental changes and animals, may
lead to elimination/death of bacteria or apply irresistible force to bacteria colony to
move from one place to another. To simulate such events on a bacteria colony, Passino
introduced elimination-dispersal events Ned in the BFO algorithm which should be repeat-
edly executed after a certain number of reproduction steps. Such events help the algo-
rithm better explore the space and aid motion toward the global optimum. Moreover,
to facilitate swarming and cooperation Passino introduced also the idea of cell-to-cell
attraction. However, we do not consider these effects here. More information about the
BFO algorithm can be found in [18]. Information about the behavior of the E.coli bac-
teria (the behavior of which the BFO algorithm is inspired from) can be found in
[19].

4.2.2 Implementation of BFO on multi-robot search

In this section we describe the modified BFO algorithm implemented on the robots. It
has some differences from the BFO algorithm developed in [18] and briefly described
above. Similar to the case of PSO, these differences arise from the kinematic and
dynamic constraints of the robots as well as the independent (and therefore decentral-
ized and asynchronous) operation of the robots. Moreover, in the implementations we
do not employ reproduction steps, elimination dispersal events or cell-to-cell attraction.
Still, the motion of the robots is based on a bacteria foraging behaviors. In other words,
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Fig. 6 Illustration of tumble and swim

the robots try to imitate bacterial chemotactic behaviors and calculate their way-points
based on the BFO algorithm. At each chemotactic step while moving from their cur-
rent way-points to their next way-points the robots continuously sense the chemical gas
concentration and calculate the average along the path. At their next way-points they
compare their readings with the average of the concentration in the traversed path. Based
on the sensed information it can exhibit three different behaviors which are discussed
below.

The algorithm can be briefly described by the pseudocode given in Algorithm 3, where
S(curri ) refers to sensor reading in the current position of the i th robot and S(previ ) is the
average of sensor reading between the starting and the ending points of the current chemotactic
step. The motion between two chemotactic steps (i.e., between two way-points) is achieved
using the algorithm with the simple pseudocode shown in Algorithm 2. Throughout the
chemotactic steps, each robot sends continuously its own sensor readings to the base station.
The experiment is continued until 50 chemotactic steps are reached.

First, the algorithm takes the absolute difference between the current concentration value
S(curri ) and the calculated average value S(previ ). If the obtained value is less than the
predefined constant TresholdValue=20, then the robots will change orientation in a random
direction within the regions 1, 2, and 3 in Fig. 6 between − 3π

4 and 3π
4 radians. This behavior

occurs when the environment is homogeneous and there is no significant change in the
concentration between chemotactic steps (way-points). In contrast, if the absolute difference
between S(curri ) and S(previ ) is greater than the TresholdValue the algorithm compares
the values of S(curri ) and S(previ ) and if the sensor reading in the current step S(curri ) is
greater than the average obtained during the current step S(previ ), then the robot will choose
its orientation in a random direction only in region 3 shown in Fig. 6 between −π

4 and π
4

and increases randomly its swimming length between 0.2 and 0.3 m in the selected direction
similar to the behavior of a bacterium in a nutrient substance swimming towards increasing
concentration. In contrast, if the value of S(curri ) is less than the value of S(previ ), similar to
a bacteria which has found that the new measurement is worse than the previous measurement,
the robot will choose an orientation in random direction in either region 1 ( π

4 , 3π
4 ) or region 2

(−π
4 , − 3π

4 ) then reduce randomly its swimming length between 0.15 and 0.2 in the selected
direction.

123



Auton Agent Multi-Agent Syst (2014) 28:72–100 87

Note that here as well in principle the robots execute the three tasks presented in Table 1
with slight modifications in the overall procedure. In particular, they calculate the next way-
points using different strategy to explore the environment (Task 1). Moreover, the robots do
not exchange information among each other or basically they do not cooperate (Task 3).

Since there is no communication and cooperation between agents they will not impose
constraints on scaling the algorithm to a larger space or larger number of robots. However,
in a larger area (and low robot density) there might be degradation of performance and
not exploring the whole space. Therefore, the initial dispersion of the robots is important.
Moreover, to overcome such shortcomings dispersal event (which are present in the original
BFO algorithm proposed by Passino although not implemented here) can be implemented as
well.

4.3 Ant colony optimization

In this section, the ACO algorithm and its implementation to the multi-robot search here
will be described. Although the ACO algorithm was proposed to solve traveling sales person
and optimal path planning problems, it has been found useful and applicable in other robotic
fields as well. Dorigo’s proposed algorithm has been implemented on industrial problems,
telecommunication networks, dynamic and stochastic optimization problems and others [4].
The implementation here follows the ideas in [21,22]. In particular, similar to the works in
[21,22], the ACO algorithm is modified and the robots are categorized in two groups which
are namely searcher and resident robots. Initially, all robots have searcher identity that can
communicate with other searcher robots and search for odor sources in the environment.
When a robot decides that it has arrived at a position close to a maxima (i.e., close to an
odor source) it becomes a resident robot. The resident robots cut off communication with
other robots and move with small steps around the determined possible odor source. The ACO
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Fig. 7 Illustration of the ACO algorithm principles

search illustration is shown in Fig. 7. As shown in the illustration the modified ACO algorithm
is performed in two main steps: local search and global search. At first robots perform local
search, during which as can be seen in Fig. 7 all searcher robots move to the vertexes and
center of gravity points of equilateral triangles and sense chemical gas concentration at each
of these points. Then searcher robots compare these sensor readings and determine their
next way-points using the highest concentration reading among visited points. Local search
is finished when the robot reaches the determined maximum concentration point in local
search. In global search, the robots communicate with each other in order to share highest
sensor readings obtained during their local search steps. The searcher robots compare their
own maximum concentration sensor readings to the average of the gathered searcher robots’
highest readings. Based on the condition

Ci < Cavg and q > q0 (10)

the searcher robots perform either random moving or probability migration. In (10) Ci refers
to the current sensor reading (which is the maximum sensor reading obtained during local
search), Cavg is the average value of the gathered sensor readings of the robots, q0 ∈ (0, 1) is
a constant number, and q is a random number which is generated in the same range of q0. If
the condition in (10) is satisfied, the searcher robot moves randomly to find better chemical
concentration regions. Otherwise, the searcher robot enters probability migration step. The
probability rate equation

Pi j = τ j (t)αηi j (t)β∑m
j=1 τ j (t)αηi j (t)β

(i = 1, 2, . . . , m) (11)

is used for probability migration. In this part a given searcher robot i calculates probability
rate Pi j for all other searchers j in the experiment/swarm and makes a decision to move
towards the robot which has maximum probability rate. In Eq. (11) m is the number of
searcher robots from which robot i can obtain information, τ j (t) is the pheromone of the j th
searcher robot, ηi j (t) is the heuristic function given by
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ηi j (t) =
⎧
⎨

⎩

eCi j (t)/γ , j �= i, j ∈ Searchers,
eCi (t)/γ , j = i, j ∈ Searchers,
0, j �∈ Searchers,

(12)

and α and β are weightiness of the pheromone and the heuristic function, respectively. In
this equation Ci (t) represents the current chemical concentration value of the i th searcher,
Ci j (t) = −(Ci (t) − C j (t)) is the negative difference between the chemical concentration
values obtained by the i th and the j th searchers and γ > 0 is a constant. The heuristic
function in (12) is one of the three heuristic functions used in [22]. It is based only on
the measured chemical concentration values and the inter-agent distances do not affect the
calculated values. After probability calculation searcher i takes a step towards searcher j
with the highest probability rate Pi j based on

S = RDi j (t) (13)

where R is a random number in the range of 0 < R < 1 and Di j (t) represents the Euclidian
distance between the two searcher robots. After execution of global search, the i’th searcher
robot updates it’s own pheromone by means of

τi (t + 1) = (1 − ρ)τi (t) +
k∑

j=1

�C j (t) (14)

where τi (t) is its pheromone value, �C j (t) is the concentration increment value of searcher
j which is approaching searcher i , and ρ is a constant which has a value between 0 < ρ < 1
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and indicates the evaporation rate of the pheromone. The pseudocode describing the operation
of the algorithm is shown in Algorithm 4. Similar to the other implemented algorithms and
as can be seen in Algorithm 4, at each step the robots send their own sensor readings and
position information to the remote computer. Note here again that the robots still perform
the three main tasks in Table 1 interfused in a different manner.

Note that in the modified ACO algorithm here communication needs among agents rise in
order to calculate (10)–(14). Requiring all searchers to share information among each other
may lead to shortcomings similar to those of CPSO. Therefore, similar to DAPSO a better
strategy is to share information using broadcasting strategy with the searcher agents which
are within communication range. This will improve the scalability of the algorithm to a larger
number of robots. In the mean time, for a large space (relative to the agent communication
range) it might again result in disconnected sub-groups searching in different regions of the
space.

5 Experimental results

In this section we present the results obtained in the implementations considered. We per-
formed experiments with three Khepera III and independentily with five miniQ robots in the
corresponding setups discussed in Sect. 2. Initially the robots are located near a corner (as
if it is an entrance) of the experimental area. The robots start the search with the 2.5 cm/s
speed, which is also set as the maximum speed vmax in (5). Their first way-points are assigned
intentionally far away from each other whereas the second way points are assigned randomly.
The objective of this step is to spread the robots and cover the area as much as possible at
start for better mapping of the gas concentration and better performance of the implemented
algorithms. The robots communicate with the base station (a remote computer) and among
each other over a wireless ad-hoc network to share their acquired information of gas concen-
tration and position. After the two initial steps the robots start bio-inspired search as higher
level path planning and determine their next way-points using the corresponding algorithm
by exploiting their measurements/knowledge. The robots move from their current way-points
to the next way-points by means of potential functions as described in Sect. 3. The imple-
mented algorithms are also expected to achieve convergence of the robots into the regions
with highest chemical concentration. Moreover, on the remote PC (i.e, the base station) data
are gathered from the robots and a real-time 3D map of the chemical concentration is con-
structed. For that purpose the data received by the base station are combined, interpolated,
and filtered to form the map of the gas concentration. Initially we used cubic interpolation
together with a two dimensional median filter with several different masks (e.g., [3,4] and
[5,5]) in Matlab.2 Then we switched to a trial version of the Golden Surfer 9 software as
the processing and visualization tool in the base station. In Surfer we used Kriging as the
interpolation/gridding method followed by an averaging filter with edge replicate and blank
leave properties.3

The obtained maps are visualized in real-time as a three dimensional plot to be viewed by
the operator. We performed experiments with several gas sources in different configurations.
Here we present the results obtained for the case in which the sources are placed in locations
close to each other in the environment. In particular, the first set of results (obtained with
three Kheperas in Setup I) are for the case in which there are three sources which are placed

2 Results obtained in Matlab are not shown.
3 More information about surfer can be found in the Surfer manual.
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(a) Trajectories of robots. (b) 3D representation of chemical
concentration.

Fig. 8 Results for the Sweep Search algorithm

Table 2 Concentration peaks of the obtained maps

Positions of the concentration peaks (in meters)

SWP (1.00, 1.32), (0.98, 0.75), (1.32, 1.07), (1.59, 1.55)

DAPSO (1.16, 1.82), (0.89, 1.25), (1.41, 0.50), (2.23, 1.80), (1.68, 1.50)

CPSO (0.93, 0.89), (1.64, 1.09), (1.52, 1.50), (1.36, 1.86), (1.43, 1.31)

DAPSO2 (0.91, 1.45), (1.43, 1.70), (1.93, 1.68), (2.02, 1.43), (1.41, 0.75)

CPSO2 (0.22, 1.50), (0.25, 1.00), (1.57, 2.16)

BFO (1.09, 1.07), (1.34, 1.25), (1.57, 1.16)

ACO (1.00, 1.25), (1.07, 1.66), (1.61, 0.70)

in the environment at the locations (1.45, 1.6), (1.5, 1.7), and (1.55, 1.6). The results for the
other cases are qualitatively similar (please see [23–25] for results obtained using alternative
configurations).

First we present the result obtained for the case of sweeping which is shown in Fig. 8.
For this case the robots traversed the predetermined paths shown in Fig. 8a. The obtained
chemical concentration map is shown in Fig. 8b. Figure 8a shows also the contour map of the
obtained chemical concentration map in which the bold stars represent the source locations in
the environment. The colored triangle figures in the contour map are used to indicate the final
positions of the robots.4 As can be seen in Fig. 8b the highest concentration of the ethanol
gas is obtained in the vicinity of the gas sources which is an intuitively expected result. This
result constitutes a base or benchmark case for comparing with the results obtained using
the bio-inspired search algorithms. The locations of the concentration peaks for the obtained
maps including the map for sweeping in Fig. 8 are shown in Table 2.

The first implemented bio-inspired algorithm is the DAPSO algorithm the results for which
are presented in Fig. 9. Figure 9a shows the trajectories of the robots superimposed on the
contour plot of the extracted environmental map for an example run and the bold stars once
again represent the source locations in the environment. The colored triangle figures in the
contour map are again used to indicate the final positions of the robots. The paths of different
robots are represented with different type of curves. The 3D plot of the obtained ethanol

4 The same coding—bold stars = source locations, colored triangles = final robot positions—are used in all the
plots in this section.
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(a) Trajectories of robots. (b) 3D representation of chemical
concentration.

Fig. 9 Results for the DAPSO algorithm

Table 3 Final positions of robots

Robot positions (in meters)

DAPSO (1.36, 1.70), (1.66, 1.82), (1.70, 1.66)

CPSO (1.66, 1.52), (1.77, 1.59), (1.86, 1.41)

DAPSO2 (1.55, 1.57), (1.75, 1.73), (1.50, 1.09)

CPSO2 (0.64, 0.50), (1.61, 0.819, (2.09, 0.70)

BFO (1.14, 1.02), (2.07, 1.34), (1.50, 0.93)

ACO (0.84, 1.61), (1.34, 1.73), (1.05, 1.16)

concentration in the environment is shown in Fig. 9b which has peaks at positions given
in Table 2. One can see that the obtained map has its peaks in the vicinity of the chemical
sources, which is similar to the sweeping case above and intuitively expected. Moreover,
the robots aggregated in the area with high chemical concentration in a close distance to the
contaminating sources. This was systematically the case for the DAPSO algorithm. The final
positions of the robots, which can be seen as colored triangles in Fig. 9a, are also shown in
Table 3. In the case in which the sources are distributed within the environment not close
to each other the robots usually aggregate in the vicinity of one of the sources (results not
shown). In other words, while the chemical concentration map is extracted realistically, the
implemented DAPSO algorithm usually can locate only one of the contaminating sources in
the environment.

As a second algorithm we implemented CPSO the results of which are shown in Fig. 10
and the corresponding peaks and robot final positions in Tables 2 and 3, respectively. The
final positions of the robots are also indicated with colored triangles in Fig. 10a. Although
the results for the DAPSO and CPSO are in principle similar and in both cases the robots
aggregate very close to (one of) the odor sources, the duration of the CPSO experiments
usually take longer than the duration of the DAPSO experiments. The CPSO algorithm is
based on synchronous interchange of information among particles. This characteristic can
be considered as a disadvantage in search by multi-robot systems since the agents which
complete their iteration have to wait until all agents are done. To further explore this issue
we performed experiments in which we explicitly introduced agent failure. For that purpose
during the search process we intentionally stop one robot and cut off its communication with
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(a) Trajectories of robots. (b) 3D representation of chemical
concentration.

Fig. 10 Results for the CPSO algorithm

(a) Trajectories of robots. (b) 3D representation of chemical
concentration.

Fig. 11 Results for the CPSO algorithm—one agent fails during run

the other robots. Figure 11 shows the result for that case obtained using the CPSO algorithm.
For this case once the other (unfailed) robots reach their own current way points they are
stuck and the search stalled since they wait for information from the failed robot. Therefore,
they fail to aggregate in the vicinity of (and therefore to locate) a contaminating source.
These can be seen from the trajectories of the robots in Fig. 11a, where the colored triangles
indicate the final positions of the robots. Moreover, the obtained chemical concentration map
shown in Fig. 11b is less accurate compared to the previous cases. The peaks of the map and
the robot positions are given in Tables 2 and 3, respectively, where the results for this case
are labeled as CPSO2. The robot positions are the positions at which the system was stalled.

To compare with CPSO, we introduced the same failure during a run of the DAPSO algo-
rithm as well the results for which are shown in Fig. 12 with the corresponding concentration
peaks and robot positions in Tables 2 and 3 with the label DAPSO2. In contrast to the CPSO
algorithm, in the DAPSO algorithm the remaining (unfailed) robots were able to continue
their missions and construct a more accurate map despite the failure of one of the agents.
Moreover, the two unfailed robots completed their iterations in the vicinity of the contam-
inating source and were able to locate it. The main reason for the success of the DAPSO
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(a) Trajectories of robots. (b) 3D representation of chemical
concentration.

Fig. 12 Results for the DAPSO algorithm—one agent fails during run

(a) Trajectories of robots. (b) 3D representation of chemical
concentration.

Fig. 13 Results for the BFO algorithm

algorithm is its decentralized and asynchronous operation and the fact that the robots do not
have to wait for the other robots to advance into their subsequent iterations.

In BFO, which is the next implemented algorithm, the agents do not exchange information
and therefore there is no cooperation between the agents. Is it possible to implement cell-
to-cell attraction to facilitate swarming and aggregation. However, in this article we did not
implement such property. Therefore, in the implementation here during search the robots
send their position information and sensor measurement only to the base station. The results
for this case are shown in Fig. 13. As in the previous cases the paths traversed by the robots are
shown in Fig. 13a superimposed on the contour plot of the obtained chemical concentration
map, whereas the 3D plot of the obtained map is shown in Fig. 13b. The peaks of the obtained
map and the positions of the robot are also given in Tables 2 and 3, respectively. Since the
robots operate based on a bacteria inspired greedy strategy and there is no communication
and cooperation between them they do not aggregate in a common location. However, this
results in the ability to locate more than one maxima of the profile. In fact, as can be seen
from Fig. 13a at the end of the experiment two of the robots were located at positions which
they perceive as local maximum concentration points. These points seem little bit displaced
from the sources due to possible airflow from the open corner of the arena. In the experiments
with different configuration of the sources located far from each other (results not shown)
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(a) Trajectories of robots. (b) 3D representation of chemical
concentration.

Fig. 14 Results for the ACO algorithm

Table 4 Final distance of robots to nearest concentration peaks

DAPSO CPSO DAPSO2 CPSO2 BFO ACO

R1 0.23 0.14 0.18 0.63 0.06 0.23

R2 0.32 0.27 0.19 1.34 0.53 0.28

R3 0.16 0.35 0.35 1.55 0.24 0.10

Av. 0.24 0.25 0.24 1.17 0.28 0.20

the robots were mostly able to locate more than one source, which is in contrast to the
DAPSO (and CPSO) algorithm where the robots usually aggregate around a single source.
In both algorithms the robots were able to build a reasonably realistic 3D map of the chemical
concentration.

As one would recall from Sect. 4.3 in the ACO algorithm the robots exchange pheromone
information and cooperate as long as they are searcher robots. Once a robot becomes a
resident robot, it cuts off communication and stops the search as well as the cooperation with
the other robots. This type of behavior is somewhere in between the continuous cooperation
in the PSO and no cooperation in the BFO algorithms. The results obtained using the ACO
algorithm are shown in Fig. 14 with corresponding concentration peaks and robot positions
in Tables 2 and 3, respectively. As can be seen from Fig. 14a the robots finish at different
locations close to what they perceive as the “high” concentration points. Therefore, similar
to the case of BFO, in the ACO algorithm the robots are able to locate more than one
source.

Table 4 shows the distance of the robots5 to the nearest concentration peaks in the obtained
map. As can be seen from the table all the algorithms except CPSO under failure show similar
performance in terms of locating robots close to at least one concentration peak.

Table 5 shows the distance of the robots to the nearest chemical sources. Once again it is
seen that CPSO under robot failure performs worst. Among the remaining cases it is seen that
PSO based algorithms perform better than the other cases including the DAPSO algorithm
under robot failure.

To evaluate the map building performance of the algorithms we analyzed the distance of
the nearest concentration peaks of the obtained maps to the chemical sources whose results

5 The distances in Tables 4, 5, and 6 are in meters.
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Table 5 Final distance of robots to nearest chemical sources

DAPSO CPSO DAPSO2 CPSO2 BFO ACO

R1 0.14 0.13 0.03 1.37 0.66 0.60

R2 0.20 0.22 0.24 0.78 0.58 0.16

R3 0.17 0.36 0.51 1.05 0.67 0.60

Av. 0.17 0.24 0.26 1.07 0.64 0.46

Table 6 Distance of concentration peaks to nearest chemical sources

DAPSO CPSO DAPSO2 CPSO2 BFO ACO SWP

S1 0.25 0.12 0.10 0.57 0.37 0.39 0.15

S2 0.27 0.20 0.07 0.46 0.48 0.43 0.18

S3 0.17 0.10 0.16 0.56 0.41 0.49 0.07

Av. 0.23 0.14 0.11 0.53 0.42 0.44 0.13

(a) Results for ACO algorithm. (b) Results for BFO algorithm.

(c) Results for DAPSO algorithm. (d) Ideal plume map (obtained
through simulation).

Fig. 15 Maps obtained with miniQs in Setup II

are shown in Table 6. The result for the sweeping is also shown in the table. Although the
algorithms (excluding CPSO under failure) have comparable performance one can see that
that PSO based algorithms showed better performance than the BFO and the ACO algorithms
in the above implementations.
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(a) Average final distance of robots to
nearest concentration peaks.

(b) Average final distance of robots to
the chemical source.

(c) Distance of concentration peaks to
the chemical source.

(d) Task completion times.

Fig. 16 Results with miniQs (averages over 5 runs)

In order to further investigate the performance of the BFO, ACO, and DAPSO algorithms
we performed more experiments in Setup II using five miniQ robots. Example maps obtained
in these experiments are shown in Fig. 15. Note that in these experiments there is single
source positioned at (1.5, 1.8) and an airflow created by fans mounded on one of the side
walls of the arena. Under these conditions the ideal map obtained through simulation is
shown in Fig. 15d. Given the imperfections in real experiments one can easily state that the
obtained maps are realistic. They are also in principle similar to the maps presented above
except for differences due to the airflow. The cumulative results for five experiments are
summarized in Fig. 16. Figure 16a and b show the average final distance of the robots to the
nearest concentration peaks and to the chemical source, respectively. The vertical lines over
the bars show the minimum and the maximum distances. These plots provide information
about the source localization performances of the algorithms. One can easily see from the
figures that the DAPSO algorithm has outperformed both the ACO and the BFO algorithms.
Figure 16c shows the average distance of the concentration peaks to the chemical source
and provides information about the mapping performances of the algorithms. Results for a
sweep search are also included in the figure. As can be seen from the figure once again the
DAPSO algorithm performs better than both the ACO and the BFO algorithms. These results
are also consistent with the maps in Fig. 15. Figure 16d shows the recorded task completion
times for the algorithms. It can be seen that BFO and DAPSO converge fast, whereas the
ACO algorithm runs for a much longer time. Taking into account all the plots one can state
that among the considered algorithms the DAPSO algorithm showed the best performance
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in the performed experiments. However, to generalize such a conclusion will need more
comprehensive investigation and further research.

It is worth mentioning that we are not compensating the gas sensors’ response time. This
will act as a low pass filter with rise time of about 2 s and recovery time of 10–15 s. Considering
that all experiments were done with the robots controlled by the sensed potential field, moving
at a maximum velocity of 2.5 cm/s, in a worst case scenario, in environments containing step
concentration changes (an unreal case due to the physics of odor transport), the time response
of the sensors would be responsible for an error of about 5 cm in the detection of a step and
about 35 cm in the detection of its finishing. In a real testing environment, similar to the ones
of the experiments, with smooth concentration changes and the robots crossing the area in
multiple directions, we can say that the sensors’ response time should be responsible for
errors of 5–20 cm.

Although the considered algorithms are designed (and more suitable) for search for minima
or maxima (e.g. concentration peaks) it is seen from the results that they perform sufficiently
well for the case of mapping as well. This shows they lead to sufficient exploration of the
environment during search although there is no intelligent/intentional bias to visit privilege
areas of weaker knowledge. Moreover, they are easy to implement and are computationally
simple. This constitutes an advantage over more complex algorithms.

6 Concluding remarks

In this study chemical concentration map building and odor source localization using bio-
inspired search algorithms such as DAPSO, Canonical Particle Swarm Optimization (CPSO),
BFO, and ACO by multiple mobile robots was considered. The results show that the robots
succeed in extracting a three dimensional map of the chemical gas concentration. Moreover,
the robots are able to locate in the vicinity of (and therefore to determine) the contaminating
leaks (which are the regions which they perceive as areas of high concentration). While in
the PSO based algorithms the robots mostly aggregate in one location in the BFO and the
ACO algorithms they can finish the search at different locations (and therefore be able to
locate more than one peak or source). The implementations are realized in a laboratory setting
using miniature mobile robots equipped with alcohol sensors and real ethanol gas as chemical
contaminant. In our implementations the DAPSO algorithm showed slightly better overall
performance compared to the other considered algorithms. However, in order to generalize
such a conclusion there is a need for further thorough investigation. It is known and has already
been studied that the performance of odor source localization algorithms, in environments
with relevant airflow, can be improved taking into account the airflow’s direction and tracking
a detected odor plume in the upwind direction until its source. Although there was some
airflow in part of the experiments, concentrating more on the map building task we did not
consider wind and turbulence effects in our implementations. Using anemometers in the
robots and adapting the algorithms in order to take into account the airflow can be a topic of
future research. Moreover, establishing a resident sensing grid system capable of extracting
the instantaneous map of the contaminating chemical into the experimental arena for better
comparison of the performance of the algorithms is a possible future research directions.
Equipping the robots with a sensor array and determining the composition of the chemicals
in addition to the other missions is another possibility for future extension. Comparison
of the performance of the bio-inspired algorithms with the performance of conventional
methods as well as considering more complex environments are also potential directions of
research.
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